роутер вай фай видеть сквозь стены

Wi-Fi роутеры позволяют любому смотреть сквозь стены

роутер вай фай видеть сквозь стены. Смотреть фото роутер вай фай видеть сквозь стены. Смотреть картинку роутер вай фай видеть сквозь стены. Картинка про роутер вай фай видеть сквозь стены. Фото роутер вай фай видеть сквозь стены

Учёные из Университетского колледжа Лондона (University College in London) придумали новый способ использования обыкновенного Wi-Fi роутера. Они разработали устройство, позволяющее с его помощью фиксировать движение за сплошной стеной.

Принцип работы такого «радара» основан на так называемом эффекте Доплера: когда радиоволна отражается от движущегося объекта, её частота меняется. Сигнал Wi-Fi представляет собой как раз такую волну. Роутеры, работающие с частотой 2,4 или 5 гигагерц, установлены сегодня во многих квартирах и офисах. Улавливая их сигналы, можно в прямом смысле смотреть сквозь стены.

Прибор, собранный инженерами Карлом Вудбриджем (Karl Woodbridge) и Кевином Четти (Kevin Chetty), имеет две антенны. Одна отслеживает сигнал базовых станций, действующих поблизости, другая принимает отражённые волны и измеряет их частоту.

Компьютер сравнивает эти данные и точно определяет наличие в зоне действия Wi-Fi роутера движущихся объектов, а также направление их движения и скорость. По мере приближения человека или предмета к маршрутизатору частота отражённого сигнала увеличивается, а при удалении – уменьшается. В экспериментах радар точно фиксировал перемещения людей за кирпичной стеной толщиной 30 сантиметров.

Само по себе устройство не посылает никаких сигналов, поэтому его невозможно обнаружить. Это делает разработку идеальной для шпионской деятельности и военных операций. Авторы планируют путём дополнительных настроек повысить чувствительность приёмника настолько, что можно будет фиксировать движения грудной клетки при дыхании, а также определять, сидит человек или стоит.

Новый радар имеет много преимуществ по сравнению с изобретением специалистов из Массачусетского технологического института (MIT), которое также позволяет видеть сквозь стены, но использует громоздкие антенны и усилители сигнала, а также излучает рентгеновские лучи.

Британское устройство легко помещается в портфеле и нуждается только в работающем Wi-Fi роутере, который будто освещает помещение своими сигналами.

Нет сомнений, что такое приспособление найдёт широкое применение. Например, оно может сильно облегчить работу полицейскому спецназу при освобождении заложников.

Однако вызывает опасение тот факт, что объектом слежки легко может стать любой человек, у которого дома имеется беспроводной маршрутизатор.

В этой связи особенную актуальность приобретают обои, блокирующие сигнал Wi-Fi, которые разработали инженеры Политехнического института Гренобля (Institut Polytechnique de Grenoble). Скорее всего, учёные не предполагали, что их изобретение, призванное бороться с любителями бесплатного доступа в Интернет, станет средством защиты от вездесущих агентов спецслужб.

Также по теме: Новое устройство позволяет видеть сквозь непрозрачное стекло и заглядывать за угол Новая камера снимает объёмные изображения объектов, находящихся за углом Создана видеокамера, записывающая триллион кадров в секунду

Источник

Обычный Wi-Fi роутер поможет видеть сквозь стены

роутер вай фай видеть сквозь стены. Смотреть фото роутер вай фай видеть сквозь стены. Смотреть картинку роутер вай фай видеть сквозь стены. Картинка про роутер вай фай видеть сквозь стены. Фото роутер вай фай видеть сквозь стены

Фотография эксперимента и срез Wi-Fi голограммы.

P. Holl and F. Reinhard / Phys Rev. Lett., 2017

Физики из Технологического университета Мюнхена разработали метод получения трехмерных голограмм помещений, использующий обычные Wi-Fi роутеры. Ученые отмечают, что голограмму можно получить даже сквозь бетонное перекрытие. Сама методика может найти применение, например, для поиска меток в складских помещениях. В теории Wi-Fi голограмму можно получать со скоростью порядка 10 кадров в секунду, что позволяет увидеть динамические изменения в исследуемом помещении. Исследование опубликовано в журнале Physical Review Letters, кратко о нем сообщает Physics.

Традиционно для исследования трехмерного пространства используют радарные техники — они требуют достаточно широкого диапазона длин волн используемого радиоизлучения. Гигагерцовое излучение Wi-Fi роутеров наоборот, имеет очень узкий диапазон. Вместе с тем, оно повсеместно распространено. Ранее уже предпринимались попытки создания радаров на основе гигагерцового излучения, но все они требовали специального оборудования, например, узконаправленных Wi-Fi-антенн. С их помощью удавалось различить фигуры людей и металлические объекты (ноутбуки и так далее).

Авторы новой работы разработали систему голографии на основе стандартных Wi-Fi роутеров (TP-LINK Archer C20, пять гигагерц, и Google Nexus S, 2,4 гигагерца в режиме точки доступа). Сам роутер выступает в роли источника сигнала, «освещающего» помещение. На другом конце помещения (в 2,3 метра) ученые поместили антенну-приемник, которую с помощью тележки перемещали в плоскости. Кроме того, в помещении была неподвижная антенна, которая использовалась как стандарт при измерении сигнала. В такой постановке эксперимента ученым удалось визуализировать металлический крест, установленный перед роутером.

При анализе данных физики записывали не только сигнал, который приходил на считывающую антенну напрямую, но и многочисленные отражения этого сигнала от окружающих источник предметов. Это позволило восстановить полную трехмерную структуру помещения. Теоретическое моделирование показало, что аналогичным образом можно получить голограмму и более крупного помещения (склада с металлическими стеллажами 20×17×12 метров), даже если источник «освещения» — роутер — располагается за межэтажным перекрытием.

Главная проблема метода — небольшая скорость сканирования. Ее можно решить, используя вместо одной антенны двумерный массив антенн. Тогда, по оценкам авторов, скорость сканирования можно будет увеличить до 10 кадров в секунду с разрешением каждого кадра в один мегапиксель.

Часто для наблюдения объектов, скрытых от источника излучения используется более высокочастотное — терагерцовое излучение. С его помощью можно, например, «заглянуть» под изоляцию тросов. Однако главная проблема терагерцового излучения — отсутствие широко распространенных компактных источников и приемников.

Источник

Wi-Vi: как видеть сквозь стены и отслеживать перемещения людей по сигналу Wi-Fi

В фантастических фильмах иногда показывают установки, позволяющие видеть людей за стенами и укрытиями. Благодаря усилиям специалистов Лаборатории искусственного интеллекта Массачусетского технологического института такая возможность понемногу становится реальностью. Речь не о тепловизорах и не о рентгене. Определить число людей в помещении за стеной или закрытой дверью теперь помогает обычный Wi-Fi.

Возможность обнаружить человека за непрозрачной преградой всегда интересовала военных, службы специального назначения и спасателей. Дальше всех продвинулась компания Camero-Tech, представив в последние годы несколько серийных вариантов такого оборудования.

Каждый из этих приборов работал по принципу радара. Изучаемая зона освещалась электромагнитными волнами той длины, которая позволяла проникать сквозь препятствия. По характеру их отражения судили о количестве объектов на пути распространения радиоволн, их скорости и направлении перемещения.

Такие методы уже применяются спецслужбами, но ещё не позволяют достичь желаемого результата. Приборы дорогие и сложные, крупногабаритные либо малоэффективные. но главная проблема даже не в этом. Малоподвижные цели (например, заложников) так практически не видно, а сам факт радиотехнической разведки становится явным и может выдать оперативную группу с головой. Конечно, в демо-роликах всё проходит идеально.

Профессор кафедры электротехники и компьютерных наук Дина Катаби (Dina Katabi) и её аспирант Фадел Адиб (Fadel Adib) пошли немного другим путём и приблизились к решению одной из двух ключевых проблем. В созданном ими устройстве используется широко распространённый диапазон Wi-Fi, на слабое повышение активности в котором вряд ли кто-то отреагирует.

В стандарте IEEE 802.11 выделяется четырнадцать каналов с длиной волны от 121 до 124 мм. Дециметровый диапазон и типичная мощность до ста милливатт приводят к тому, что качество связи в значительной степени зависит от наличия любых преград на пути распространения сигнала. Заметное влияние оказывает перемещение людей, что и используется в данном случае.

В реальных условиях практически не встречаются сплошные стены. В них есть пустоты, стыки, технологические отверстия и штробы, поэтому слабый сигнал Wi-Fi проходит даже через преграды, которые внешне кажутся монолитными.

В устройстве Wi-Vi (аббревиатура от Wireless Vision) маломощный сигнал излучается в противофазе одновременно двумя антеннами. Отражения радиоволн регистрируются одним приёмником. Основная доля отражений возникает от стен и других неподвижных объектов внутри исследуемого помещения. Такие радиоволны приходят одновременно и взаимно гасятся, а оставшийся минимальный шум отфильтровывается программным способом. В итоге учитываются только радиоволны, отразившиеся от движущихся объектов – людей.

Приведённый ролик демонстрирует не только возможность определить присутствие людей в зоне действия источника сигнала Wi-Fi, но и узнать направление их движения. Когда человек удаляется от размещённого за стеной прибора, возникает доплеровское смещение, меняется угол отражения радиоволн и график уходит вниз. Соответственно движение в направлении антенны вызывает резкий подъём на графике, а топтание на месте отмечается слабыми всплесками в районе фонового уровня от статичного окружения.

Раньше подобных результатов удавалось достичь только с помощью массива разнесённых по большой площади антенн, индивидуальных приёмников для каждой и сложных алгоритмов обработки.

Прототип Wi-Vi использует только две антенны и один приёмник, что в разы уменьшает габариты и стоимость прибора. По словам разработчиков, с помощью первой версии устройства уже можно отслеживать перемещение за стеной как отдельных людей, так и группы численностью до трёх человек.

Впервые технология Wi-Vi была представлена на проходившей в Гонконге конференции SIGCOMM. В качестве примеров практического использования докладчиками приводились сценарии работы поисково-спасательных команд, выявление засады сотрудниками полиции, а также оценка сил противника и поиск заложников антитеррористическими подразделениями.

К похожей концепции пришли в прошлом году и в университетском колледже Лондона. Созданный там прототип Wi-Fi-сканера примечателен тем, что никак не выдаёт самого факта проведения разведки. Это пассивное устройство, анализирующее изменение характеристик сигнала на частоте 2,4 ГГц от изначально работающих точек доступа Wi-Fi.

Есть у описываемых технологий и совершенно другие потенциальные сферы применения. Например, на их основе можно создавать системы постоянного подсчёта количества людей в общественном месте и регулировать его работу. Появляется возможность автоматически изменять параметры работы климатической системы и вентиляции, скорость движения эскалаторов, частоту следования транспорта, своевременно получать сообщения о потребности в дополнительном персонале и применять другие схемы адаптивного управления.

Источник

Анализ Wi-Fi сигнала позволяет следить за людьми, которые находятся по ту сторону стены

роутер вай фай видеть сквозь стены. Смотреть фото роутер вай фай видеть сквозь стены. Смотреть картинку роутер вай фай видеть сквозь стены. Картинка про роутер вай фай видеть сквозь стены. Фото роутер вай фай видеть сквозь стены
Лондон. Университетский колледж UCL. Инженеры Карл Вудбридж и Кевин Четти изобрели устройство, с помощью которого можно фиксировать движение за сплошной стеной.

Работа прибора основана на эффекте Доплера: при отражение волны от движущегося объекта, меняется ее частота. В качестве таких волн успользуют сигналы Wi-Fi, посылаемые роутером, который работает на частоте 2,4 или 5 гигагерц. На данный момент они очень распространены во многих офисах и зданиях.

Таким образом данный прибор, позволит, в буквальном смысле, смотреть сквозь стены, в здании, где есть Wi-Fi излучение.

Устройство состоит из двух антенн. Первая получает сигналы от базовых станций, расположенных поблизости, вторая отслеживает отраженные волны и измеряет их частоту.

Программное обеспечение сравнивает полученные данные и определяет в зоне действия Wi-Fi наличие движущихся объектов, плюс направление их движения и скорость перемещения.

При приближении к роутеру частота отраженного сигнала возрастает, при отдалении — уменьшается.

При тестовых испытаниях радар точно определял перемещения людей за 30 сантиметровой кирпичной стеной. Так как устройство только принимает сигналы, но не посылает, его невозможно обнаружить обычными методами.

Применение в военной и шпионской деятельности, спецназа и всего, что с этим связано. В доработанной версии устройства авторы планируют повысить его чувствительность, что можно будет фиксировать движения грудной клетки во время дыхания. Также можно будет определить сидит или стоит человек за стеной.
Радар легко помещается в портфеле, для его работы нужен только Wi-Fi роутер, который будет освещать сканируемое помещение своими лучами.

Основным преимуществом от ему подобных устройств: портативность и сложность при обнаружении.

Правда, объектом слежки может стать любой человек, имеющий у себя в доме Wi-Fi роутер. В связи с этим особую актуальность приобретают обои, блокирующие Wi-Fi сигнал.

Источник

Как меняется сигнал Wi-Fi в зависимости от материала стен и других препятствий

Как известно, в беспроводных сетях в качестве среды распространения сигнала используются радиоволны (радиоэфир), и работа устройств и передача данных в сети происходит без использования кабельных соединений.
В связи с этим на работу беспроводных сетей воздействует большее количество различного рода помех.

Далее приведем список самых распространенных причин, влияющих на работу беспроводных сетей Wi-Fi (IEEE 802.11b/g/n).

Другие Wi-Fi-устройства (точки доступа, беспроводные камеры и др.), работающие в радиусе действия вашего устройства и использующие тот же частотный диапазон

Дело в том, что Wi-Fi-устройства подвержены воздействию даже небольших помех, которые создаются другими устройствами, работающими в том же частотном диапазоне.

В беспроводных сетях используются два частотных диапазона — 2,4 и 5 ГГц. Беспроводные сети стандарта 802.11b/g работают в диапазоне 2.4 ГГц, сети стандарта 802.11a — 5 ГГц, а сети стандарта 802.11n могут работать как в диапазоне 2.4 ГГц, так и в диапазоне 5 ГГц.

Используемый частотный диапазон и эксплуатационные ограничения в разных странах могут быть различные.

В полосе частот 2,4 ГГц для беспроводных сетей доступны 11 или 13 каналов шириной 20 МГц (802.11b/g/n) или 40 МГц (IEE 802.11n) с интервалами 5 МГц между ними. Беспроводное устройство, использующее один из частотных каналов, создает значительные помехи на соседние каналы. Например, если точка доступа использует канал 6, то она оказывает сильные помехи на каналы 5 и 7, а также, уже в меньшей степени, – на каналы 4 и 8. Для исключения взаимных помех между каналами необходимо, чтобы их несущие частоты отстояли друг от друга на 25 МГц (5 межканальных интервалов).

роутер вай фай видеть сквозь стены. Смотреть фото роутер вай фай видеть сквозь стены. Смотреть картинку роутер вай фай видеть сквозь стены. Картинка про роутер вай фай видеть сквозь стены. Фото роутер вай фай видеть сквозь стены

На рисунке показаны спектры 11 каналов. Цветовая кодировка обозначает группы непересекающихся каналов – [1,6,11], [2,7], [3,8], [4,9], [5,10]. Беспроводные сети, расположенные в пределах одной зоны покрытия, рекомендуется настраивать на непересекающиеся каналы, на которых будет наблюдаться меньше интерференции* и коллизий (конфликтов). Номера непересекающихся каналов – 1, 6 и 11.
* Интерференция — сигнал, передаваемый другими излучателями (они могут быть или не быть частью вашей сети Wi-Fi) на том же канале (или близком к нему), на котором вещает ваша точка доступа.
Для определения наиболее свободного канала Wi-Fi можно воспользоваться специальной утилитой InSSIDer.

Внимание! В России разрешены к использованию 13 беспроводных каналов, три из которых являются непересекающимися (это каналы 1, 6 и 11).

Если беспроводной адаптер, установленный на компьютере/ноутбуке/планшетном ПК/смартфоне, предназначен для использования в США (например, в устройствах Apple), на нем можно будет использовать только каналы с 1 по 11. Поэтому, если установить номер канала 12 или 13 (а также если один из них был выбран алгоритмом автоматического выбора канала), беспроводной клиент (iPad/iPhone) не увидит точку доступа. В этом случае необходимо вручную установить номер канала из диапазона с 1 по 11.

В некоторых случаях на точке доступа рекомендуется понизить мощность сигнала Wi-Fi до уровня 50 — 75%

2.1. Использование слишком большой излучаемой мощности сигнала Wi-Fi не всегда означает, что сеть будет работать стабильно и быстро.
Если радиоэфир, в котором работает ваша точка доступа, сильно загружен (при обзоре беспроводных сетей вы видите большое их количество и мощность их сигнала высокая), то может сказываться влияние внутриканальных и межканальных помех. Наличие таких помех влияют на производительность сети, т.к. резко увеличивают уровень шума, что приводит к низкой стабильности связи из-за постоянной перепосылки пакетов. В этом случае рекомендуем понизить мощность передатчика в точке доступа.
Если настройку понижения мощности передатчика вы не нашли в точке доступа, то это можно сделать другими способами: по возможности увеличить расстояние между точкой доступа и адаптером; открутить антенну на точке доступа (если такая возможность предусмотрена в устройстве); при наличии съемных антенн — использовать антенну с более низким коэффициентом усиления сигнала (например, с коэффициентом усиления 2 дБи вместо 5 дБи).

2.2. Мощность передатчика точки доступа в роутере обычно выше в 2-3 раза, чем на клиентских мобильных устройствах (ноутбук/смартфон/планшет). В зоне покрытия сети могут быть такие места, где клиент будет слышать точку доступа хорошо, а точка доступа клиента — плохо, или вообще не слышать (ситуация, когда сигнал на клиентском устройстве есть, а связи нет). В канале связи возникает асимметрия от разных значений мощностей и чувствительности приемников.
Для обеспечения хорошего уровня сигнала нужно, чтобы между клиентским устройством и точкой доступа было как можно более симметричное соединение, чтобы точка доступа и клиент уверенно слышали друг друга.
Как это не покажется странным, но для устранения асимметрии и получения более стабильной связи иногда следует понизить мощность передатчика в точке доступа.

Bluetooth-устройства, работающие в зоне покрытия вашего Wi-Fi-устройства

Bluetooth-устройства работают в том же частотном диапазоне, что и Wi-Fi-устройства, т.е в 2.4 ГГц, следовательно, могут оказывать влияние на работу Wi-Fi-устройств.

Большие расстояния между Wi-Fi-устройствами

Необходимо помнить, что беспроводные устройства Wi-Fi имеют ограниченный радиус действия. Например, домашний интернет-центр с точкой доступа Wi-Fi стандарта 802.11b/g имеет радиус действия до 60 м в помещении и до 400 м вне помещения.
В помещении дальность действия беспроводной точки доступа может быть ограничена несколькими десятками метров — в зависимости от конфигурации комнат, наличия капитальных стен и их количества, а также других препятствий.

Препятствия

Различные препятствия (стены, потолки, мебель, металлические двери и т.д.), расположенные между Wi-Fi-устройствами, могут частично или значительно отражать/поглощать радиосигналы, что приводит к частичной или полной потере сигнала.
В городах с многоэтажной застройкой основным препятствием для радиосигнала являются здания. Наличие капитальных стен (бетон+арматура), листового металла, штукатурки на стенах, стальных каркасов и т.п. влияет на качество радиосигнала и может значительно ухудшать работу Wi-Fi-устройств.
Внутри помещения причиной помех радиосигнала также могут являться зеркала и тонированные окна. Даже человеческое тело ослабляет сигнал примерно на 3 dB.

Ниже показана таблица потери эффективности сигнала Wi-Fi при прохождении через различные среды. Данные приведены для сети, работающей в частотном диапазоне 2.4 ГГц.

ПрепятствиеДополнительные потери (dB)Эффективное расстояние*
Открытое пространство0100%
Окно без тонировки (отсутствует металлизированное покрытие)370%
Окно с тонировкой (металлизированное покрытие)5-850%
Деревянная стена1030%
Межкомнатная стена (15,2 см)15-2015%
Несущая стена (30,5 см)20-2510%
Бетонный пол/потолок15-2510-15%
Монолитное железобетонное перекрытие20-2510%

* Эффективное расстояние — означает, насколько уменьшится радиус действия после прохождения соответствующего препятствия по сравнению с открытым пространством. Например, если на открытом пространстве радиус действия Wi-Fi до 400 метров, то после прохождения одной межкомнатной стены он уменьшится до 400 м * 15% = 60 метров. После второй еще раз 60 м * 15% = 9 метров. А после третьей 9 м * 15% = 1,35 метров. Таким образом, через три межкомнатные стены, скорее всего, беспроводное соединение установить не получится.

Вне помещений влиять на качество передаваемого сигнала может ландшафт местности (например, деревья, леса, холмы).
Атмосферные помехи (дождь, гроза, снегопад) также могут являться причиной уменьшения производительности беспроводной сети (в случае, если радиосигнал передается вне помещений).

Различная бытовая техника, работающая в зоне покрытия вашего Wi-Fi-устройства

Перечислим бытовую технику, которая может являться причиной ухудшения качества связи Wi-Fi:

Устройства, работающие по стандарту USB 3.0 могут создавать помехи для сети Wi-Fi в диапазоне 2,4 ГГц

При тестировании интернет-центров в нашей лаборатории мы не сталкивались с такой ситуацией, когда подключенное устройство по USB 3.0 оказывало бы влияние на работу беспроводной сети в диапазоне 2,4 ГГц. Но исключать таких случаев мы не можем.

Такая проблема может быть вызвана помехами, исходящими от подключаемых устройств или кабелей, разъемов, коннекторов c интерфейсом USB 3.0. В частности, может иметь место отсутствие или недостаточное экранирование кабеля или коннектора подключаемого устройства, что может привести к помехам (интерференции) на частотах в диапазоне 2,4 ГГц (на этой частоте работают большинство беспроводных устройств).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *